2,917 research outputs found

    Spectroscopic accuracy directly from quantum chemistry: application to ground and excited states of beryllium dimer

    Get PDF
    We combine explicit correlation via the canonical transcorrelation approach with the density matrix renormalization group and initiator full configuration interaction quantum Monte Carlo methods to compute a near-exact beryllium dimer curve, {\it without} the use of composite methods. In particular, our direct density matrix renormalization group calculations produce a well-depth of DeD_e=931.2 cm1^{-1} which agrees very well with recent experimentally derived estimates DeD_e=929.7±2\pm 2~cm1^{-1} [Science, 324, 1548 (2009)] and DeD_e=934.6~cm1^{-1} [Science, 326, 1382 (2009)]], as well the best composite theoretical estimates, DeD_e=938±15\pm 15~cm1^{-1} [J. Phys. Chem. A, 111, 12822 (2007)] and DeD_e=935.1±10\pm 10~cm1^{-1} [Phys. Chem. Chem. Phys., 13, 20311 (2011)]. Our results suggest possible inaccuracies in the functional form of the potential used at shorter bond lengths to fit the experimental data [Science, 324, 1548 (2009)]. With the density matrix renormalization group we also compute near-exact vertical excitation energies at the equilibrium geometry. These provide non-trivial benchmarks for quantum chemical methods for excited states, and illustrate the surprisingly large error that remains for 11Σg^1\Sigma^-_g state with approximate multi-reference configuration interaction and equation-of-motion coupled cluster methods. Overall, we demonstrate that explicitly correlated density matrix renormalization group and initiator full configuration interaction quantum Monte Carlo methods allow us to fully converge to the basis set and correlation limit of the non-relativistic Schr\"odinger equation in small molecules

    H2O contents and hydrogen isotopic composition of apatite crystals from L, LL5-6 ordinary chondrites.

    Get PDF
    第3回極域科学シンポジウム/第35回南極隕石シンポジウム 11月30日(金) 国立国語研究所 2階講

    The manifest association structure of the single-factor model: insights from partial correlations

    Get PDF
    The association structure between manifest variables arising from the single-factor model is investigated using partial correlations. The additional insights to the practitioner provided by partial correlations for detecting a single-factor model are discussed. The parameter space for the partial correlations is presented, as are the patterns of signs in a matrix containing the partial correlations that are not compatible with a single-factor model

    Analysis of Bidirectional Associative Memory using SCSNA and Statistical Neurodynamics

    Full text link
    Bidirectional associative memory (BAM) is a kind of an artificial neural network used to memorize and retrieve heterogeneous pattern pairs. Many efforts have been made to improve BAM from the the viewpoint of computer application, and few theoretical studies have been done. We investigated the theoretical characteristics of BAM using a framework of statistical-mechanical analysis. To investigate the equilibrium state of BAM, we applied self-consistent signal to noise analysis (SCSNA) and obtained a macroscopic parameter equations and relative capacity. Moreover, to investigate not only the equilibrium state but also the retrieval process of reaching the equilibrium state, we applied statistical neurodynamics to the update rule of BAM and obtained evolution equations for the macroscopic parameters. These evolution equations are consistent with the results of SCSNA in the equilibrium state.Comment: 13 pages, 4 figure

    Absolute value measurement of ion-scale turbulence by two-dimensional phase contrast imaging in Large Helical Device

    Full text link
    Absolute value measurements of turbulence amplitude in magnetically confined high-temperature plasmas can effectively explain turbulence-driven transport characteristics and their role in plasma confinements. Two-dimensional phase contrast imaging (2D-PCI) is a technique to evaluate the space-time spectrum of ion-scale electron density fluctuation. However, absolute value measurement of turbulence amplitude has not been conducted owing to the nonlinearity of the detector. In this study, the absolute measurement method proposed in the previous study is applied to turbulence measurement results in the large helical device. As a result, the localized turbulence amplitude at ne=1.5×1019n_e=1.5\times 10^{19}m3^{-3} is approximately 3.5×10153.5\times 10^{15}m3^{-3}, which is 0.02\% of the electron density. In addition, the evaluated poloidal wavenumber spectrum is almost consistent, within a certain error range, the spectrum being calculated using a nonlinear gyrokinetic simulation. This result is the first to the best of our knowledge to quantitatively evaluate turbulence amplitudes measured by 2D-PCI and compare with simulations
    corecore